Search This Blog

Saturday, November 2, 2013

Расчет статически неопределимых систем методом перемещений на силовое воздействие

            1. Степень кинематической неопределимости сооружения
Расчет статически неопределимых систем методом сил на различные воздействия сводится к определению усилий в лишних связях из системы канонических уравнений этого метода. Вычисление внутренних усилий в различных элементах сооружения и построение их эпюр в методе сил производится в основной системе, как правило, статически определимой, испытывающей заданные воздействия и воздействия усилий в лишних связях. Таким образом, выявление напряженно-деформированного состояния сооружений в расчетах методом сил начинается с получения картины распределения внутренних усилий и завершается вычислением перемещений отдельных узлов и сечений сооружения.
Возможен принципиально иной подход к расчету сооружений, когда выявление их напряженно-деформированных состояний начинается с определения перемещений от заданных воздействий и завершается построением эпюр внутренних усилий. Такой подход в расчетах сооружений реализуется в методе перемещений.
В методе перемещений сохраняются допущения, ранее принятые при расчете сооружений методом сил, а именно: материал, из которого изготовлены элементы сооружений, подчиняется закону Гука; перемещения отдельных сечений и узлов сооружений малы по сравнению с их геометрическими размерами. C учетом сформулированных допущений сооружения можно рассматривать как линейно-деформируемые системы, для которых справедлив принцип независимости действия сил и вытекающий из него принцип пропорциональности.
Известно, что для определения изгибающего момента в произ­вольном сечении заданного стержня необходимо знать величины поворотов в концевых сечениях и относительные линейные смеще­ния концов стержня друг относительно друга.
При расчете статически неопределимой системы методом пере­мещений первоначально необходимо установить общее число неиз­вестных перемещений, подлежащих определению для адекватного вычисления величин внутренних усилий.
За неизвестные в методе перемещений принимаются перемещения узлов от заданных воздействий: линейные перемещения шарнирных и жестких узлов Z1 и Z2 и повороты жестких узлов Z3 (рис. 8.1,а). Суммарное количество неизвестных угловых (nθ) и линейных (nΔ) перемещений узлов называется степенью кинематической неопределимости сооружения.
nkin = nθ + nΔ.                                  (8.1)
Число неизвестных угловых перемещений nθ равно количеству жестких узлов сооружения. Жестким считается узел, в котором кон­цы, по крайней мере, двух из сходящихся в нем стержней жестко связаны между собой (например, узлы 1, 2, 3, на рис.8.2, а).
Рис.8.2

Для сооружений, в которых перемещения от внешних воздействий обусловлены преимущественно изгибными деформациями, при определении числа независимых линейных перемещений узлов вводятся дополнительные допущения:
1. Элементы сооружений считаются нерастяжимыми и несжимаемыми, т.е. пренебрегают изменением их длин под действием продольных сил.
2. Предполагается, что длины хорд искривленных стержней равны их первоначальным длинам, т.е. А′В′ = АВ (рис. 8.3).
Считая сформулированные допущения справедливыми, число независимых линейных перемещений узлов сооружения nΔ можно определить по его шарнирной схеме, полученной из заданного сооружения введением во все жесткие узлы, включая и опорные, врезанных цилиндрических шарниров (рис.8.2, б и рис.8.4, б). Число неизвестных линейных сме­щений узлов системы равно числу стержней, которые необходимо ввести в шарнирную схему, чтобы превратить ее в геометрически неизменяемую систему. Следовательно, число независимых линей­ных смещений узлов равно степени геометрической изменяемости шарнирной системы, полученной из заданной, путем введения во все жесткие узлы, включая и опорные, полных шарниров.
На основании о пренебрежении продольными деформациями элементов, для плоской рамы (рис.8.1, а), линейные смещения узлов отсутствуют. При этом, шарнирная схема (рис.8.2, б) является геометрически неизменяемой.
Рис.8.4

Рамы, шарнир­ные схемы которых являются геометри­чески неизменяемы­ми, относятся к ка­тегории, так называ­емых, закрепленных или несвободных. Для таких рам число неизвестных перемещений легко определяется и оно всегда равно числу жестких узлов: n = nθ . В нашем примере nkin 3.
В качестве другого примера, рассмотрим раму, изображенную на рис.8.4, a, число жестких узлов которого равно 2. Следова­тельно, nθ  = 2.
Шарнирная схема рамы один раз геометрически изменяемая, так как для превращения ее в геометрически неизменяемую необ­ходимо ввести 1 стержень, например, так, как это показано на рис.8.4, б. Итак, число линейных неизвестных перемещений nΔ= 1. Общее число неизвестных перемещений в рассматриваемой системе, изображенной на рис.8.4, a, равно nkin  = 2 + 1 = 3.
Степень свободы полученной таким образом шарнирной схемы будет равна числу независимых линейных перемещений узлов заданной системы. Для подсчета количества степеней свободы плоской шарнирной схемы W используют формулу:

W = 2Y − C − Co,                                                                                              (8.2)
где    Y – число узлов;   C – число стержней,  соединяющих узлы;
Co – число опорных связей.
2. Определение коэффициентов при неизвестных и свободных членов системы канонических уравнений
Коэффициенты при неизвестных rij и rii и свободные члены RiF системы канонических уравнений метода перемещений (см. п. 8.3) можно определить, используя эпюры внутренних усилий, полученные в основной системе от смещения наложенных связей на величину, равную единице, и от заданной нагрузки с помощью стандартных задач (см. п. 8.4).
Для определения реакций в наложенных связях от вышеупомянутых воздействий используют статический или кинематический способы.
Статический способ. Реакция в любой наложенной связи в основной системе метода перемещений от единичных кинематических воздействий и от нагрузки определяется из условия равновесия узла или любой части сооружения, содержащих рассматриваемую связь (см. пример в п. 8.7).
Кинематический способ. Используя принцип возможных перемещений, определим коэффициенты при неизвестных rij и rii.

Рис. 8.14

Рассмотрим i-е исходное состояние основной системы метода перемещений, в котором i-я наложенная связь получила перемещение на величину, равную единице, и определим реакцию в j наложенной связи  rji от этого перемещения (рис. 8.14,а). За возможные примем перемещения в j-м состоянии основной системы (рис. 8.14,б). Суммарная возможная работа внешних (Wext,ij) и внутренних (Wint,ij) сил i-го состояния на возможных перемещениях, имеющих место в j-м состоянии, в силу равновесия рассматриваемой системы равна нулю
Wext,ijWint,ij = 0.                                                         (8.8)

В соотношении (8.8) возможная работа внешних сил запишется:
Wext,ij = rji · 1.                                                               (8.9)
Возможную работу внутренних сил вычислим с учетом только изгибных деформаций
                    (8.10)
После подстановки выражений (8.9) и (8.10) в зависимость (8.8) получим
                              (8.11)
Если i-е состояние основной системы будем рассматривать как исходное и как вспомогательное, повторно применяя принцип возможных перемещений, вычислим
                                           (8.12)
Из соотношения (8.12) следует, что главные коэффициенты rii системы канонических уравнений всегда положительны. Формула (8.11) по существу подтверждает теорему о взаимности реакций (rji = rij), так как множители Mik(s) и Mjk(s) в подынтегральном выражении можно менять местами.
Для определения реакций в наложенных связях от заданной нагрузки RiF воспользуемся теоремой о взаимности возможных работ состояний F и i,  изображенных на рис. 8.15,а.
                                                              
                                                    (8.13)
Так как
то, используя равенство (8.13), получим:
                                                             (8.14)
где – перемещение в направлении обобщенной силы F от смещения i-й наложенной связи на величину, равную единице в основной системе метода перемещений.
Перемещение определяется по формуле, которую здесь приведем без доказательства:
                               (8.15)
В соотношении (8.15):  – изгибающие моменты в основной системе метода перемещений от смещения i-й наложенной связи на величину, равную единице;  – изгибающие моменты в любой статически определимой основной системе метода сил, полученной из рассматриваемой основной системы метода перемещений удалением лишних связей, в том числе обязательно и i-й связи, от единичного обобщенного фактора (рис.8.15,в).
Изгибающие моменты  от полного значения обобщенной силы F можно представить в виде
 отсюда
                                               (8.16)
Соотношение (8.15) с учетом зависимости (8.16) перепишется:
                             (8.17)
После подстановки выражения (8.17) в формулу (8.14) окончательно получим
                         (8.18)
Вычисление коэффициентов при неизвестных и свободных членов системы канонических уравнений метода перемещений с помощью соотношений (8.11), (8.12) и (8.18), как и в методе сил, можно произвести сопряжением соответствующих эпюр внутренних усилий, используя формулу Симпсона или правило Верещагина.
В двадцать второй лекции будет рассмотрено определение коэффициентов при неизвестных и свободных членов системы канонических уравнений метода перемещений в матричной форме.

No comments:

Post a Comment